Synthesis of biochemical applications on digital microfluidic biochips with operation execution time variability

نویسندگان

  • Mirela Alistar
  • Paul Pop
چکیده

Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets. Several approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers have assumed that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcets, resulting in unexploited slack in the schedule. In this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a quasi-static synthesis strategy that determines offline a database of alternative implementations. During the execution of the application, several implementations are selected based on the current execution scenario with operation execution time variability. The proposed strategies have been evaluated using several benchmarks and compared to related work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

Microfluidic biochips are an alternative to conventional biochemical laboratories, and are able to integrate on-chip all the necessary functions for biochemical analysis. The " digital " biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array of electrodes. The main objective of this thesis is to develop top-down synthesis techniques for d...

متن کامل

Reconfiguration Techniques for Digital Microfluidic Biochips

As digital microfluidic biochips become widespread in safety-critical biochemical applications, system dependability emerges as a critical performance parameter. The dynamic reconfigurability inherent in digital microfluidic biochips can be utilized to bypass faulty cells, thereby supporting defect/fault tolerance. In this paper, we propose three different reconfiguration techniques and the cor...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

Testable Design of a Heterogeneous SoC for Biomedical Applications

Microfluidic biochips are becoming more and more popular in biomedical laboratory and also industry. Different from the continuous-flow microfluidic systems, a new generation of microfluidic biochips, referred to as digital microfluidic chips, has evolved over time and it offers advantages such as on-line reconfiguration and fault-tolerant operation. The principles behind the digital microfluid...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integration

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2015